

First/Second Semester B.E. Degree Examination, July/August 2022 Basic Electrical Engineering

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Kirchoff's laws.
(06 Marks)
b. A 10Ω resistance is connected in series with a parallel combination of 15Ω and 20Ω resistors. The circuit is applied with V volts. The power taken by the circuits is 150 watts. Solve for the total current through the circuit and power consumed in all resistors. (06 Marks)

2 a. State and explain OHM's law and list out its limitations.
(05 Marks)
b. An alternating current i is given by $i=100 \sin 314$ t. Find i) The amplitude ii) Frequency iii) Time period iv) Rms value v) Average value vi) Form factor vii) Peak factor.
(07 Marks)
c. In Fig Q2(c), find the voltage across 4Ω resistor and the supply voltage V .

(08 Marks)

3 a. Show that power consumed in a pure capacitor is zero when a sinusoidal voltage is applied across it. Draw the voltage, current and power wave forms.
(06 Marks)
b. A series R - L - C circuit with $100 \Omega, 25 \mu \mathrm{~F}$ and 0.15 H is connected across $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate i) Impedance ii) Current iii) Power consumed iv) power factor of the circuit.
(08 Marks)
c. Obtain the relationship between the line and phase quantities in a three phase balanced star connected system. Also derive the power equation.
(06 Marks)

OR

4 a. Derive the equation for the current and the power consumed in a series R-C circuit when a sinusoidal voltage is applied across it. Also draw the waveforms of voltage current and power, and releyant phasor diagrams.
(08 Marks)
b. Show that two wattmeters are sufficient to measure three phase power consumed in a 3-phase load, using relevant phasor diagram. Also derive the expression for the power factor.
(06 Marks)
c. A parallel circuit consists of 20Ω in series with an inductive reactance of 15Ω in one branch and a resistance of 30Ω in series with a capacitive reactance of 20Ω in the other branch. Determine the current and power dissipated in each branch if the total current drawn is $10 \bigsqcup-30^{\circ}$ Amps.
(06 Marks)

Module-3

5 a. Derive the EMF equation of a single phase transformer.
(06 Marks)
b. With a neat sketch, illustrate 2 way and three way control of lamps.
(08 Marks)
c. A single phase, 25 KVA transformer has 1000 primary turns and 2500 secondary turns. The net cross - sectional area of the core is $100 \mathrm{~cm}^{2}$, when the primary winding is connected to $550 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, calculate :
i) The maximum value of flux density in the core
ii) The voltage induced in the secondary winding
iii) The primary and secondary full load currents
iv) Voltage induced per turn on primary and secondary.
(06 Marks)

OR

6 a. Develop an expression for the efficiency of a transformer and hence obtain the condition for the maximum efficiency.
(06 Marks)
b. In a $100 \mathrm{KVA}, 2000 / 200 \mathrm{~V}$ single phase transformer, the iron and full load copper losses are 960 watts and 1200 watts respectively. Calculate the efficiency at i) full load, upf ii) half full load, 0.8 pf iii) The load KVA corresponding to the maximum efficiency.
(06 Marks)
c. What is earthing? With a neat figure, explain plate and pipe earthing.
(08 Marks)

Module-4

7 a. With a neat sketch, explain the construction of a dc generator, and state the function of each part.
(08 Marks)
b. Derive an expression for the torque developed in the armature of a DC motor. (06 Marks)
c. An 8 pole lap connected armature has 960 conductors, a flux of $40 \mathrm{mwb} /$ pole and a speed of 400 rpm . Calculate the emf generated. If the armature were wave connected, at what speed must it be driven to generate 400 V ?
(06 Marks)

8 a. Develop the emf equation of a DC generator.
(06 Marks)
b. Sketch the torque V s I_{a} characteristics and speed $\mathrm{Vs}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}$ characteristics of dc shunt motor and dc series motor and explain.
(08 Marks)
c. A 4 pole DC shunt motor takes 22 A from 220 V supply. The armature and field resistances are 0.5Ω and 100Ω respectively. The armature is lap connected with 300 conductors. If the flux per pole is 20 mwb , calculate the speed and gross torque.
(06 Marks)

Module-5

9 a. Explain the concept of rotating magnetic field in case of a 3phase induction motor. ($\mathbf{0 8}$ Marks)
b. Explain how stationary armature is advantageous in case of an alternator.
(05 Marks)
c. A 16 pole, 3 phase alternator has star connected winding with 144 slots and 10 conductors $/$ slot. The flux per pole is 0.03 wb and the speed is 375 rpm . Find the frequency and line emf generated. Given : $\mathrm{K}_{\mathrm{d}}=0.96, \mathrm{~K}_{\mathrm{p}}=1$.
(07 Marks)

OR

10 a. Derive the Emf equation of a synchronous, generator, with K_{p} and K_{d}.
(08 Marks)
b. Define the slip of an induction motor and derive the expression for frequency of rotor current.
(06 Marks)
c. A 6 pole induction motor is supplied form a $3 \phi, 50 \mathrm{~Hz}$ supply has a rotor frequency of 2.3 Hz . Solve for the percentage slip and the speed of the motor.
(06 Marks)

